Techsolut API Documentation
Our RESTful API allows you to integrate Techsolut's advanced computer vision capabilities directly into your applications.
v2.5.0 Last updated: April 15, 2025
Table of Contents
Authentication Base URL Rate Limits Error HandlingEndpoints
Object Detection Image Classification Text Recognition (OCR) Model Management Dataset ManagementAuthentication
The Techsolut API uses API keys to authenticate requests. You can view and manage your API keys in your Techsolut dashboard.
Authentication Header
Pass your API key in the Authorization
header of all API requests:
Authorization: Bearer YOUR_API_KEY
Important: Keep your API key confidential and never share it publicly. Do not embed it directly in client-side code.
Base URL
All URLs referenced in this documentation have the following base URL:
https://api.techsolut.fr/v1
Rate Limits
To ensure service availability for all users, the Techsolut API enforces rate limits. The limits vary based on your subscription plan.
Rate Limit Headers
Each API response includes headers that indicate your current rate limit status:
Header | Description |
---|---|
X-RateLimit-Limit |
The maximum number of requests you can make per minute. |
X-RateLimit-Remaining |
The number of requests remaining in the current time window. |
X-RateLimit-Reset |
The time in seconds until the current time window resets. |
Error Handling
The Techsolut API uses standard HTTP status codes to indicate the success or failure of an API request. Error codes are accompanied by descriptive error messages to help you understand and resolve the issue.
Error Format
{
"error": {
"code": "invalid_request",
"message": "The request was malformed. Check the 'details' field for more information.",
"details": "The parameter 'confidence' must be a float between 0 and 1.",
"status": 400,
"request_id": "req_7PtGLOvd9YHhe0"
}
}
Common Error Codes
HTTP Code | Error Code | Description |
---|---|---|
400 | invalid_request |
The request is malformed or contains invalid parameters. |
401 | unauthorized |
Invalid or missing authentication. |
403 | forbidden |
You are not allowed to access this resource. |
404 | not_found |
The requested resource does not exist. |
429 | rate_limit_exceeded |
You have exceeded your rate limit. |
500 | internal_error |
An internal error occurred on the server. |
Object Detection
Detect objects in images with bounding boxes, classes, and confidence scores.
Detects objects in an image and returns their positions, classes, and confidence scores.
Request Parameters
{
"image": "...",
"confidence": 0.5,
"model": "yolov8x",
"classes": ["person", "car"],
"max_detections": 20
}
Content-Type: multipart/form-data
...
file: [binary image data]
confidence: 0.5
model: yolov8x
classes: person,car
max_detections: 20
Parameter | Type | Description |
---|---|---|
image |
string | Base64-encoded image (JSON request) or binary file (form-data). |
confidence |
float | Minimum confidence threshold (0.0-1.0). Default: 0.25 |
model |
string | Model to use for detection. Default: "yolov8x" |
classes |
array | Filter results by class. Optional |
max_detections |
integer | Maximum number of objects to detect. Default: 100 |
Response
{
"success": true,
"detections": [
{
"class": "person",
"confidence": 0.92,
"box": {
"x1": 23.5,
"y1": 74.2,
"x2": 483.1,
"y2": 352.7
}
},
{
"class": "car",
"confidence": 0.87,
"box": {
"x1": 532.3,
"y1": 152.0,
"x2": 789.6,
"y2": 245.1
}
}
],
"processing_time": 0.234,
"model": "yolov8x"
}
Implementation Examples
curl -X POST https://api.techsolut.fr/v1/detect \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"image": "...",
"confidence": 0.5,
"model": "yolov8x"
}'
import requests
import base64
from PIL import Image
import io
# Charger et encoder l'image en base64
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Configuration
api_key = "YOUR_API_KEY"
api_endpoint = "https://api.techsolut.fr/v1/detect"
image_path = "path/to/your/image.jpg"
# Préparer les données
image_base64 = encode_image(image_path)
data = {
"image": f"data:image/jpeg;base64,{image_base64}",
"confidence": 0.5,
"model": "yolov8x"
}
# Envoyer la requête
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response = requests.post(api_endpoint, json=data, headers=headers)
# Traiter la réponse
if response.status_code == 200:
detections = response.json()
print(f"Detected {len(detections['detections'])} objects:")
for detection in detections['detections']:
print(f"- {detection['class']}: {detection['confidence']:.2f}")
else:
print(f"Error: {response.status_code}")
print(response.text)
// Fonction pour encoder une image en base64
function encodeImageFileAsURL(file) {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result);
reader.onerror = reject;
reader.readAsDataURL(file);
});
}
// Fonction principale pour détecter des objets
async function detectObjects(imageFile) {
const apiKey = 'YOUR_API_KEY';
const apiEndpoint = 'https://api.techsolut.fr/v1/detect';
try {
// Encoder l'image en base64
const imageBase64 = await encodeImageFileAsURL(imageFile);
// Préparer les données
const data = {
image: imageBase64,
confidence: 0.5,
model: "yolov8x"
};
// Envoyer la requête
const response = await fetch(apiEndpoint, {
method: 'POST',
headers: {
'Authorization': `Bearer ${apiKey}`,
'Content-Type': 'application/json'
},
body: JSON.stringify(data)
});
// Traiter la réponse
if (response.ok) {
const result = await response.json();
console.log(`Detected ${result.detections.length} objects`);
// Traiter chaque détection
result.detections.forEach(detection => {
console.log(`${detection.class}: ${detection.confidence.toFixed(2)}`);
});
return result;
} else {
throw new Error(`HTTP error! status: ${response.status}`);
}
} catch (error) {
console.error('Error:', error);
throw error;
}
}
// Utilisation avec un input file
const fileInput = document.getElementById('imageInput');
fileInput.addEventListener('change', async (e) => {
const file = e.target.files[0];
if (file) {
try {
const result = await detectObjects(file);
// Afficher les résultats
displayResults(result);
} catch (error) {
console.error('Detection failed:', error);
}
}
});
<?php
// Configuration
$apiKey = 'YOUR_API_KEY';
$apiEndpoint = 'https://api.techsolut.fr/v1/detect';
$imagePath = 'path/to/your/image.jpg';
// Charger et encoder l'image
$imageData = file_get_contents($imagePath);
$base64Image = 'data:image/jpeg;base64,' . base64_encode($imageData);
// Préparer les données
$data = [
'image' => $base64Image,
'confidence' => 0.5,
'model' => 'yolov8x'
];
// Initialiser cURL
$curl = curl_init();
curl_setopt_array($curl, [
CURLOPT_URL => $apiEndpoint,
CURLOPT_RETURNTRANSFER => true,
CURLOPT_POST => true,
CURLOPT_POSTFIELDS => json_encode($data),
CURLOPT_HTTPHEADER => [
'Authorization: Bearer ' . $apiKey,
'Content-Type: application/json'
]
]);
// Exécuter la requête
$response = curl_exec($curl);
$httpCode = curl_getinfo($curl, CURLINFO_HTTP_CODE);
curl_close($curl);
// Traiter la réponse
if ($httpCode === 200) {
$result = json_decode($response, true);
echo "Objets détectés: " . count($result['detections']) . "\n";
foreach ($result['detections'] as $detection) {
echo "- " . $detection['class'] . ": " .
number_format($detection['confidence'], 2) . "\n";
}
} else {
echo "Erreur HTTP: " . $httpCode . "\n";
echo $response . "\n";
}
?>
Asynchronous version of the detect endpoint, useful for large images or when many images need to be processed.
This endpoint accepts the same parameters as /detect
but immediately returns a task ID. You then need to use the /tasks/{task_id}
endpoint to check the status and retrieve results.
Response
{
"task_id": "task_fRsj4iLk8Z",
"status": "processing",
"estimated_time": 5,
"task_url": "https://api.techsolut.fr/v1/tasks/task_fRsj4iLk8Z"
}
Image Classification
Classify images by assigning labels and confidence scores.
Classifies an image and returns the most relevant labels with their confidence scores.
Request Parameters
Parameter | Type | Description |
---|---|---|
image |
string | Base64-encoded image (JSON request) or binary file (form-data). |
top_k |
integer | Number of top categories to return. Default: 5 |
model |
string | Model to use for classification. Default: "resnet101" |
Response
{
"success": true,
"classifications": [
{
"label": "golden retriever",
"confidence": 0.92
},
{
"label": "labrador retriever",
"confidence": 0.07
},
{
"label": "dog",
"confidence": 0.01
}
],
"processing_time": 0.156,
"model": "resnet101"
}
Text Recognition (OCR)
Extract and recognize text from images.
Extracts text from an image and returns the detected content with the position of each text element.
Request Parameters
Parameter | Type | Description |
---|---|---|
image |
string | Base64-encoded image (JSON request) or binary file (form-data). |
language |
string | Primary language of the text (ISO 639-1 code). Default: "auto" |
detailed |
boolean | If true, returns detailed information about each text element. Default: false |
Response
{
"success": true,
"text": "Lorem ipsum dolor sit amet, consectetur adipiscing elit.",
"elements": [
{
"text": "Lorem ipsum",
"confidence": 0.98,
"box": {
"x1": 10,
"y1": 20,
"x2": 100,
"y2": 40
}
},
{
"text": "dolor sit amet,",
"confidence": 0.95,
"box": {
"x1": 110,
"y1": 20,
"x2": 250,
"y2": 40
}
},
{
"text": "consectetur adipiscing elit.",
"confidence": 0.92,
"box": {
"x1": 10,
"y1": 50,
"x2": 200,
"y2": 70
}
}
],
"language": "la",
"processing_time": 0.221
}
Model Management
Create, train, and manage your own computer vision models.
Lists all your available models, including both predefined and custom models.
Request Parameters
Parameter | Type | Description |
---|---|---|
type |
string | Filter by model type: "detection", "classification", "ocr", or "segmentation". Optional |
custom_only |
boolean | If true, returns only your custom models. Default: false |
limit |
integer | Maximum number of models to return. Default: 50 |
offset |
integer | Number of models to skip (for pagination). Default: 0 |
Response
{
"models": [
{
"id": "yolov8x",
"name": "YOLOv8X",
"type": "detection",
"description": "State-of-the-art object detection model",
"custom": false,
"version": "1.0.0",
"last_updated": "2024-01-15T12:00:00Z",
"status": "active"
},
{
"id": "mod_custom_retail",
"name": "Retail Product Detector",
"type": "detection",
"description": "Custom model for retail product detection",
"custom": true,
"version": "2.3.0",
"created_at": "2024-03-10T09:23:15Z",
"last_updated": "2024-04-05T14:18:32Z",
"status": "active",
"metrics": {
"map": 0.892,
"precision": 0.917,
"recall": 0.885
}
}
],
"total": 12,
"limit": 50,
"offset": 0
}
Creates a new custom model that can be trained on your own data.
Example Request
curl -X POST https://api.techsolut.fr/v1/models \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"name": "Custom Product Detector",
"type": "detection",
"description": "Detects specific retail products in store shelves",
"base_model": "yolov8n",
"classes": ["soda_can", "cereal_box", "snack_bag", "water_bottle"]
}'
Dataset Management
Create and manage datasets for training your custom models.
Lists all your available datasets.
Creates a new empty dataset.
Adds images to an existing dataset.