Enrich your training data by automatically generating image variations to improve model performance.
Data Augmentation Tool
Techsolut's data augmentation tool allows you to enrich your image datasets by automatically generating realistic variations from your existing images. This technique is essential for improving the robustness and performance of your computer vision models.
Principle and Benefits
Data augmentation involves creating new training images by applying various transformations to original images. This approach offers several advantages:
- Increase dataset size without additional collection
- Improve model generalization
- Reduce overfitting
- Better robustness to natural variations (lighting, orientation, etc.)
- Compensate for imbalances in classes
Available Transformations
Our tool offers a wide range of transformations:
Geometric Transformations
- Rotation (from 0° to 360°)
- Horizontal and vertical flipping
- Translation
- Scaling (zoom in/out)
- Shearing
- Elastic deformation
- Perspective
Color Transformations
- Brightness adjustment
- Contrast adjustment
- Saturation adjustment
- Hue adjustment
- White balance
- Weather condition simulation
Special Transformations
- Gaussian blur
- Noise (Gaussian, salt and pepper, etc.)
- Partial occlusion (area masking)
- MixUp (image fusion)
- CutMix (cutting and pasting)
- Mosaic (image assembly)
User Interface
The intuitive interface allows you to:
- Select your images - Import a folder of images or select an existing dataset
- Configure transformations - Choose which transformations to apply and their parameters
- Preview results - See generated images before validating
- Generate and export - Create the new augmented dataset
Usage Modes
Manual Mode
Precisely configure each transformation and visualize the effect on your images.
Assisted Mode
The tool suggests transformations adapted to your data type and task.
Automatic Mode
Simply define the number of desired images and let the tool generate a balanced dataset.
Annotation Management
The tool intelligently manages your image annotations:
- Bounding boxes - Automatically adjusted during transformations
- Segmentation masks - Transformed along with the image
- Keypoints - Correctly repositioned
- Classifications - Preserved during augmentation
Quality Control
To ensure the quality of augmented data:
- Automatic filtering of poor quality images
- Artifact detection
- Annotation consistency verification
- Batch validation with rejection possibility
Workflow Integration
Augmentation can be:
- Performed offline (pre-generation)
- Integrated directly into the training pipeline (on-the-fly augmentation)
- Dynamically adapted based on model performance
Cet article vous a-t-il été utile ?
Dans cette page
Articles similaires
IADans cette catégorie
- Outil de segmentation sémantique
- Outil d'analyse vidéo
- Outil d'extraction de caractéristiques
- Outil de reconnaissance faciale
- Outil OCR (Reconnaissance Optique de Caractères)
- Outil d'optimisation de modèles
- Outil de génération d'images par IA
- Outil d'analyse de pose humaine
- Outil de détection d'anomalies
- Outil de comparaison de modèles